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cati equation can be used, which greatly reduces the computa-
tion burden. Also, not shown here, the linear differential equa-
tion in Eq. (7) “‘tracks’’ the actual state trajectories and serves
to force the nominal-model state trajectories to the actual state
trajectories.

Finally, if W is chosen too small from the optimal weighting
matrix, the resulting matrix Riccati equations are “‘stiff”’ and
tend to diverge very quickly. This can be extremely useful in
determining a good starting guess for the weighting matrix.

Conclusions

This Note has established a matrix Riccati solution for the
minimum model error estimation algorithm. The functional
form for the solution of the associated two-point boundary
value problem includes one Riccati equation and one linear
differential equation with discrete update discontinuities at
each measurement time. The homogeneous Riccati equation
can be reduced to an algebraic Riccati equation if the assumed
model is linear and time-invariant, thus reducing the solution
to linear differential and algebraic equations. The algorithm
was demonstrated for a simple linear time-invariant model.
Results indicate that the algorithm is capable of determining
optimal state estimates by using the closed-form solution.

References

!Kalman, R. E., ““A New Approach to Linear Filtering and Predic-
tion Problems,”” Transactions of the ASME, Journal of Basic Engi-
neering, Ser. D, Vol. 82, March 1960, pp. 34-45.

2Mook, D. J., and Junkins, J. L., ‘“Minimum Model Error Estima-
tion for Poorly Modeled Dynamic Systems,”’ Journal of Guidance,
Control, and Dynamics, Vol. 11, No. 3, 1988, pp. 256-261.

3Stry, G. 1., and Mook, D. J., “Robust Identification of Nonlinear
Structural Damping,”” Proceedings of Damping °91, San Diego, CA,
Feb. 1991, pp. GCBI1-17.

4Roemer, M. J., and Mook, D. J., “‘An Enhanced Mode Shape
Identification Algorithm,”” Proceedings of the AIAA/ASME/ASCE/
AHS/ASC 30th Structures, Structural Dynamics, and Materials Con-
ference (Mobile, AL), AIAA, Washington, DC, 1989, pp. 753-762
(AIAA Paper 89-1245).

5Roemer, M. J., and Mook, D. J., ““Enhanced Realization/Identi-
fication of Physical Modes,”” Journal of Aerospace Engineering, Vol.
3, No. 2, 1990, pp. 128-139.

Optimal Control System Design with
Prescribed Damping and Stability
Characteristics
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Introduction

ESIGN of multivariable optimal control systems with

specified damping and stability characteristics has been a
goal pursued by a number of researchers. Practical time-do-
main performance requirements often include the following
two important specifications: 1) the response must be suffi-
ciently fast and smooth, and 2) the response must not exhibit
excessive overshoot and oscillations. The first specification
places a bound on the settling time, whereas the second one
gives rise to a bound on the damping ratio. For this reason, the
shaded area of Fig. 1 has been widely accepted as a suitable
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design sector. Because direct optimal pole placement in the
shaded area is a very difficult problem to solve, a multitude of
approximate regions have been proposed in the literature.!->
The following theorem has been crucial in developing most of
the root-clustering algorithms.

Relative Stability Theorem: The eigenvalues of the matrix
A lie within the shaded stability region of Fig. 2, if and only if
the eigenvalues of the 2N X 2N matrix

4.9 [cosﬁ —sin B] )

sinf3 cosf

have negative real parts. The angle 8 is given by §=#/2-0,
and A, is defined as A —al. See Ref. 6 for the proof.

For example, a design procedure based on the preceding
theorem recently appeared in Ref. 3. The straightforward im-
plementation of this theorem, however, results in a root-clus-
tering sector that underestimates the design region as can be
seen in Fig. 2. Hence, the main goal of this Note is to develop
a new design method based on a more accurate approximation
of the shaded region of Fig. 1.

Problem Formulation and Solution
Consider the following linear time-invariant dynamic system

X=AX + BU 2

where A and B are constant matrices of order N XN and
N X M, respectively. The problem solved in this Note is to
determine a state feedback controller of the form U = KX such
that 1) the closed-loop system matrix 4 + BK has all of its
eigenvalues within the shaded region of Fig. 1, and 2) the fol-
lowing linear quadratic performance index is minimum

J= g (XTOX +2XTMU + UTRU) dt
0

The preceding eigenvalue-clustering problem is solved by
transforming the shaded area into the left-hand plane of an
associated dynamiic system. To begin with the transformation
process, consider the Laplace transform of Eq. (2), assuming
zero initial conditions:

sX(s) =AX(s)+ BU(s) 3)
Im
mm\ .
w “ )
-

Fig. 1 Design sector with prescribed damping and stability specifi-
cations.

\\ A Im
~
~
-
\l Re
NN
-~
—
—
—~
-

Fig. 2 Design sector resulting from direct implementation of the rel-
ative stability theorem.
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Let
s=Y%(p+a?/p) “
Then Eq. (3) becomes
2
02
pX(p)=24X(p) - ;X(p)+23U(p) )
or in the time domain
X=2AX—oz2SX dr + 2BU (6)
Define two new state variables
Wy =X %)

w, = Sth,

Hence, the dynamics of the associated system are governed by
Wl _ 0 I Wi + 0 U (8)
wol | - 24w, 2B

W=HW + FU ©)

or

Now the relationship between the original and associated dy-
namic system eigenvalues can be established. Set s =x +yj and
p =Re’?, Then Eq. (4) becomes

x +yj = Va(Re/? + a?/Re’%) (10)

Equating the real and imaginary parts results in

x =Y (r+a®/r)cost

(11)
y=W(r—o¥r)sing
Further algebraic manipulation yields
2 2
X Y _ 12

cos2f  sin26

which is the equation of a hyperbola centered at the origin with
foci on the real axis. The hyperbola is asymptotic to the lines

y = Fxtan (13)

Hence, the straight lines emanating from the origin at angles 6
in the p plane are mapped into hyperbolas in the s plane.

Based on the preceding analytical results, it is possible to
develop a procedure to design closed-loop systems with eigen-
values clustered within the shaded region of Fig. 1. First, how-
ever, note that the proposed transformation from the s domain
to the p domain preserves the controllability of the system.
This can be easily seen from the fact that the associated p-do-
main system is actually the s-domain system controlled by the
state-space version of the proportional + integral (PI) con-
troller as given next:

U =2BKX — ozsz det 14)

This interpretation of the associated system gives a physical
meaning to the s to p domain transformation. Clearly, if the
s-domain system is controllable, i.e., [A, B] is a controllable
pair, then the associated p-domain system is also controllable,
i.e., [H, F] is a controllable pair.

Design Algorithm: The results of the preceding section
can now be summarized in the form of a design algorithm.
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1) Select a suitable pair [«, 8] to represent the design region.
2) Form the associated p-domain closed-loop system matrix

a0 I
LT —a?I 2(A +BK)

3) Rotate the Hcp matrix through 8= x/2 -6 in the p plane
using

cosf —sinf
E=Ha® [sinﬁ cos 3 }

4) Because the integral gain is already fixed by a suitable
choice of «, the problem, at this step, is reduced to the optimal
output-feedback control of the associated p-domain system.
Finding a proportional gain matrix K that stabilizes the E
matrix and also minimizes the quadratic performance index

J= r (WT[O 0} W+2WT[ 0} U+ UTRU> dr
0 0 Q M

can be accomplished by employing a numerical algorithm in
the spirit of Ref. 7. Please note that X =w,. It now follows
that if the 4N x 4N rotation matrix E has all of its poles in
the left-hand complex plane, then the poles of A + BK lie in
the design sector of Fig. 1.

Example: The dynamic system considered is a double in-

tegrator:
. 0 1 0
X = X + U
00 1

The performance index matrices were chosen to be

10 1.2
Qz[o 1]’ M:[I.Z]’ R=M

The standard linear quadratic regulator design locates the
eigenvalues at A\ ,= —0.387+0.921; with the damping ratio
of {=0.387. The sector defined by a=1.0 and =60 deg
was selected as the design region. The algorithm developed
in this paper produced a state feedback matrix with k=
—4.261 and k), = — 3.844. The resulting closed-loop eigenval-
ues are Ay = —1.922+0.753; with {=0.931. In comparison,
the procedure of Ref. 3 results in an overdamped closed-loop
system with k;;=—5.788, kj;=—5.163, \;= —1.645, and
A= —3.518.

Conclusions

This Note has presented a new method to design optimal
state-feedback controllers. The resulting closed-loop system
has all of its eigenvalues clustered within a region defined by
stability and damping requirements. The analytical results can
be easily extended to include the dynamic output-feedback
controller design problem. The major drawback of the present
method is the fourfold increase in the computational memory
requirements. However, availability of the supercomputer like
personal workstations will quickly alleviate this problem in the
near future. The focus of current research is on the use of the
H,.-based performance index to achieve robustness against
parametric uncertainty.
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1. Introduction

YSTEMS are designed to operate within a nominal do-

main that may cover different stages of a standard opera-
tion. Therefore, multiple models, or models with varying
parameters, characteristic of the current operating conditions,
must be established to represent the dynamics. However, the
number of models and related control laws must be reduced to
be tractable.

The problem of the design of guaranteed cost control laws
has been a topic of interest since Chang and Peng! introduced
the idea of modifying the Riccati equation of the standard
linear quadratic regulator (LQR) problem to cope with param-
eter uncertainties. More recently, with the large emphasis in
robust control theory, the topic has gained new interest with
authors such as Vinkler and Wood,? Petersen and Hollot,? and
Schmitendorf.*

In this Note, the results of Vinkler are extended to the case
of a variable control matrix, and a new formulation of the
modified Riccati equation is proposed. Guaranteed perfor-
mance and stability domains are then derived around each
reference point subject to such control laws. A paving of the
whole operations domain is then possible using repetitive cal-
culations. An heuristic approach is proposed to select a limited
number of reference points. This approach is applied to the
design of multiple laws for the longitudinal control of an air-
plane within its flight domain.

II. Guaranteed Cost Control Law
Let us consider the linear system given by

x=A(p)x + B(p)u X € R, ue®" )

with

N N
A(p)=A4p+ glpiAi B(p) =By + ;piBi )
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where (A, By) is controllable and p is a vector of characteristic
parameters of the system operating point, and matrices A4;
are supposed rank one matrices. Let Dg be the feasible opera-
tions domain. Then we consider p € D, where D, is a connex
subset of Dy. The cost functional C over the entire operation
domain is

T
C:S (x'Ox +u'Ru) dt 3)
0

where Q and R are, respectively, positive semidefinite and
positive definite matrices. Let S(¢) be the n X n symmetric
matrix solution of the modified Riccati equation defined as

8(r) + S(£)Ap + AbS(t) — S(1)BoR ~'BS(2)
+Q+P[S(n]=0 @

with 0=<¢<T and S(T)=0 where matrix P(S) is a symmetric
upper bound of

E(p,S)=S[A(p)-Ao| + [A(p)—Ao|'S + SB.R ~'B{S
~ SB(p)R "'B(p)S )
in the sense that
x'P(S)x =x'E(p,S)x

vpeD, Vxe®” (6)

In Sec. III it will be shown how to find such an upper bound.

Here the following theorem holds:

Theorem: Let S(¢) be the solution of the modified Ric-
cati equation (4). Then choosing the control law u(z)
= —R~'B{S(t)x(t), the value of the cost functional C is
bounded above

T
S (x'Ox +u'Ru) dt < x(S(0)xy, vp eD, )]
0
So this control law is called a guaranteed cost control law over
D,.
Note that this theorem is a generalization of Theorem 1 in
Ref. 2, because here we also consider uncertainty in the control
matrix B.
Proof: From Eq. (4) we get

Vx € ®": x[8+SAo+A§S —SBoR "'B{S +Q +P(S)|x =0
®

and replacing P(S) by E(p,S), the following inequality is
obtained:

vx € ®": x'[8+SA(p)+AY(p)S
—SB(p)R~'BY(p)S+Q]x =0 ©)
From Eq. (1) we get
% (x'Sx) = x'[8+SA(p)+A'(p)S|x
+ x![SB(p)|u + u'[B(p)S]x 10
and from Eq. (8)
vx € ®": x[$+SA(p)+A'S|x

<x![SB(p)R~'B'(p)S—Q]x an

and
d_ t t -
o (x'Sx) = x'[SB(p)R ~'B(p)S - Q|x

+ x'SB(p)u + u'B!Sx (12)



